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LETTER TO THE EDITOR

Collective excitations of a single skyrmion in two
dimensions at high magnetic field

S V Iordanski
L D Landau Institute, ulica Kosygina 2, Moscow 113334, Russia and Max-Planck-Institut–CNRS
High Magnetic Field Laboratory, BP 166, F 38042, Grenoble Cédex 9, France

Received 6 February 1998

Abstract. The propagation of spin waves in the presence of a single skyrmion was considered.
It was found that short-wavelength spin waves are hardly scattered, and that the main effect
consists in an additional rotation of the spin deviation around the unperturbed spin direction in
skyrmions. A special branch of collective excitations was found corresponding to oscillations
of the skyrmion core size.

Since the pioneering theoretical paper [1], there have been a large number of articles
published concerning a special kind of distortion of the uniform ferromagnetic state for
odd-Landau-level fillings of 2D electron systems. These distortions, called skyrmions, are
characterized by the rotation of the average spin vector on a large scale defined by Zeeman
and Coulomb energies with nontrivial topological properties. It was shown that the creation
of two such excitations with opposite charges (and topological numbers) has lower energy
than that of a spin exciton [2, 3] at small enoughg-factors. The question of the energy of
one isolated skyrmion was not addressed. In later work [4, 5], a kind of gradient expansion
was developed to calculate the skyrmion energy. The authors of [4, 5] assumed that the
electron spinors belong to the same Landau-level states before and after the transformation
induced by application of the nonuniform rotation matrixU(r). This reduced rotation matrix
was not unitary:U+(r)U(r) 6= 1. The consideration in [4, 5] is invalid for the isolated
skyrmion also.

These inconsistencies can be removed [6–8] by using a subsequent transformation
induced by application of a nonreduced rotation matrix and considering the full Schrödinger
equation obtained by means of ordinary perturbation theory applied to the gradients of this
matrix. The various physical quantities were calculated in the first and zero order of the
expansion in inverse electron mass (or in cyclotron frequency). The results show that the
formation of the isolated skyrmion gives rise to an additional ‘effective’ spin-dependent
vector potential. If the corresponding total ‘effective’ magnetic field is lower than the
external one, the creation of the isolated skyrmion with the appropriate topological number
gives the gain in thermodynamic energy. If the degree of mapping is zero (two skyrmions
with opposite topological numbers), this gain will be absent and the results of [1] are valid.
The topological Hopf term in the skyrmion action was found. Its value corresponds to
Fermi statistics in the sense of reference [9].

It is possible to use here the technique developed for the investigation of collective
modes of single skyrmions. Collective modes of skyrmion systems (skyrmion crystals) were
considered in [10] and will not be discussed here. We shall use the general semiclassical
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method to solve the linearized classical equation of motion and carry out its subsequent
quantization. This method is used for example in the theory of spin waves [11]. In [8] the
same method was applied to achieve the quantization of the skyrmion motion as a whole. It
was shown that a skyrmion neutralized by an additional bound electron has a lower energy
than a charged one due to its lack of oscillation in the external magnetic field.

I will now give a general outline of the theory. I give first a short description of the
procedure followed to obtain the action depending on the skyrmion rotation matrixU(r).
Details can be found in [7]. First, one must carry out the unitary transformation of the
electron spinorsψ(r) = U(r)χ(r) to new spinorsχ . The electron Lagrangian transforms
from

L0 =
∫ {

iψ+
∂ψ

∂t
− ψ+

(
−i

∂

∂r
+ A0

)2

ψ

− 1

2

∫
V (r − r′)ψ+(r)ψ+(r′)ψ(r′)ψ(r) dr ′

}
dr dt (1)

to

L =
∫ {

iχ+
∂χ

∂t
− χ+

(
−i

∂

∂r
+A0− iU+

∂U

∂r

)2

χ + iχ+U+
∂U

∂t
χ

− 1

2

∫
V (r − r′)χ+(r)χ+(r′)χ(r′)χ(r) dr ′

}
dr dt. (2)

We use units in which ¯h = 1, the magnetic length squaredl2H = ch̄/(eB) = 1, and
the external magnetic fieldB = 1 (normal to the 2D plane).A0 is the appropriate vector
potential. The rotation matrix can be defined by three Euler angles [12]:

U(r) = Uz(γ )Uy(β)Uz(α)
where the subscripts denote the appropriate axes of the rotation, and thez-axis coincides
with the direction of the magnetic field. It is supposed that after the transformation the
correct solution of the Schrödinger equation will be close to the solution in which the
spinorχ has only one componentχ with σzχ ≈ χ . Untransformed spinorsψ are obtained
by rotation of this spinorχ by any form ofU . In order to have a nonzero degree of mapping
of the 2D plane onto a sphere, which is required by definition for a skyrmion, one must
have polar-angle singularity in the anglesα andδ for our choice ofz-axis. The transformed
Lagrangian contains the quantities−iU+ ∂νU = �lνσl , whereν = (x, y, z) and theσl are
the Pauli matrices, with

�zν =
1

2
(∂να + sinβ ∂νγ )

�xν =
1

2
(sinβ cosα ∂νγ − sinα ∂νβ)

�yν =
1

2
(sinβ sinα ∂νγ + cosα ∂νβ).

(3)

The transformation performed will be nonsingular only if the singularities ofα andγ
are the same and occur at the point where cosβ = −1. Furthermore, we consider the
simplest case with unit degree of mapping and symmetricalα = γ = ϕ, whereϕ is a polar
angle defined with respect to the skyrmion centre at which cosβ(r0) = −1. The degree of
mapping is given by the integral

1

2π

∫
rotΩz d2r = Q
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whereQ is an arbitrary integer.
Now it is possible to proceed in the usual Hartree–Fock way by dividing the Hamiltonian

into two parts:

H0 =
∫ {

1

2mχ
χ+
(
−i

∂

∂r
+A0+Ωlσl

)2

χ + χ+�ltσl

−
∫
V (r − r′)〈χ+λ (r′)χµ(r)〉χ+µ (r)χλ(r′) d2r ′

}
d2r dt (4)

and the interaction part

Hint = −1

2

∫
V (r − r′)χ+λ (r)χµ(r′)[χ+µ (r′)χλ(r)− 2〈χ+µ (r′)χλ(r)〉] d2r d2r ′. (5)

Here, we denote the uniform average atH0 with �lν = 0 by the angle brackets; the
subscript attached toχ denotes the corresponding spin component.

Figure 1. A graphical representation of the skyrmion action, Solid lines correspond to the parts
of the electron Green function identified in the picture. Broken lines correspond to the interaction
potential. The quantityS0 corresponds to the action with the HamiltonianH0, including all of
the corrections due to the nonuniformity of the rotation matrix.

The corresponding action depending on the matrixU can be obtained within the Hartree–
Fock approximation as shown in figure 1. Here the first term corresponds to the electron
Green function with the Hamiltonian (4).G = G0+ δG whereG0 is the reduced form with
�lν = 0. The interaction potential is denoted by broken lines. We neglect here the Zeeman
term, assuming a small value of theg-factor, and consider it later in the first approximation
of the perturbation theory.

The Green functionG0 has the form

G0(r, r
′, t − t ′) =

∑
s,p

∫
gs(ω)e

iω(t ′−t)8sp(r)8
+
sp(r

′)
dω

2π
(6)

where

g0 = 1

ω + (J − iδ)σz

gs 6=0 = 1

ω + Jσz + iδ
δ→+0

and8sp are normalized wave functions of Landau levels. We assume that only the lowest
level, s = 0, with spin up is fully filled and that the others are empty. The quantity

J = e2

2lH

√
2π

is the exchange energy per electron in the uniform ferromagnetic state. In such a way, the
skyrmionic action can be obtained from a gradient expansion in terms of�lν .
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The thermodynamic energy〈H −µN〉, whereµ is the chemical potential andN is the
number of particles, was obtained in [7, 8]; it contains some topologically invariant terms,
the most important of which is proportional toωc and gives the gain in the thermodynamic
energy for skyrmions with negativeQ. These terms do not contribute to the equations of
motion and are not essential for the consideration of collective modes. At small distances
from the skyrmion centre the gradient energy prevails; it can be expressed either in terms
of �l or directly in terms of the Euler anglesα, β:

E0 = 1

2
J ′
∫ (

∂nj

∂xl

)2

d2r (7)

with

J ′ = 1

16
√

2π

e2

lH

and

n = (sinβ cosα, sinβ sinα, cosβ).

E0 is not topologically invariant but its minimal value is proportional to|Q| and does not
depend on the skyrmion sizeLc [13]. At distances of the order ofLc and beyond, one
needs to take into account the next small terms: the Zeeman energy

EZ =
∫
gµBH(nz − 1)

d2r

2π

and the Coulomb energy

EC = e2

lH

A

L

with the constantA depending on the charge distribution. According to the minimal solu-
tion [13],

nz − 1∼
(
Lc

r

)2(
−1

2

)
and we get for the size-dependent energy, with logarithmic accuracy,

E1 = −gµBH L2
c

2π
ln
L∗

Lc
+ Ae2

lHLc
(8)

whereL∗ is the distance at which the gradient energy is of the order of the Zeeman energy:

L∗ =
√

J ′

gµBH

and the Zeeman energy decreases exponentially. The core size is defined by the minimum
of equation (8), and we have, with logarithmic accuracy,

L3
c ln

L∗

Lc
= Ae2

gµBHlH
.

It is essential that at distancesL ∼ Lc the gradient energy is still large compared to the
Zeeman and Coulomb energy, assuming a small value of theg-factor. At larger distances
the orientation of the average spin is close to the direction of the magnetic field, and all
situations can be treated by means of perturbation theory.
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Along the lines of the above consideration, I will now investigate the collective modes—
spin waves in the exchange approximation—but neglecting both the Zeeman and the
Coulomb energies. The variation of the skyrmion action

Sex = −
∫ [

�zt +
1

2
J ′
(
∂nj

∂rk

)2
]

d2r dt (9)

in α, β gives the classical Landau–Lifshitz equation

n× ∂n
∂t
= J ′∇n

which, after using the linearizationn = n0(r)+m(r, t), acquires the form

n0× ∂m
∂t
=∇m (10)

wheren0(r) is the unperturbed spin direction in the skyrmion.
The complexity of this equation is connected with the change ofn0 in the 2D plane.

Introducing a rotating coordinate system, we assume thatn0 = V ž,m = Vm′ where
V (r) = Vz(α)Vy(β)Vz(γ ) is the rotation matrix for the average spin direction expressed in
terms of the same three Euler angles,α, β andγ = α = ϕ, with ž denoting the unit vector
in the z-direction. The matricesV are no longer 2× 2 spinor matrices; they are now 3× 3
rotation matrices that can operate on three-component vectors.

After carrying out this rotation, we get

ž × ∂m
′

∂t
= J ′V +∇(Vm′).

It is easy to show using the identityV +V = 1 that the last equation can be recast in the
form

ž × ∂m
′

∂t
= J ′

(
∂

∂r
+ V + ∂V

∂r

)2

m′. (11)

This is analogous to the tranformation from expression (1) to expression (2). By direct
differentiation, one can show that

V +
∂

∂r
V = 0lτl

where

01 = (1+ cosβ)∇ϕ
02 = (sinϕ∇β − sinβ cosϕ∇ϕ)
03 = (cosϕ∇β + sinβ sinϕ∇ϕ)

(12)

and the antisymmetric matricesτl given by

τ1 =
( 0 −1 0

1 0 0
0 0 0

)
(13)

τ2 =
( 0 0 0

0 0 −1
0 1 0

)
(14)

τ3 =
( 0 0 1

0 0 0
−1 0 0

)
(15)
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correspond to infinitesimal rotations.
The solution of equation (11) can be obtained by means of perturbation theory applied

to the0l and their derivatives. We consider here only the matrix01τ1 corresponding to the
rotation of the vectorm′ around the direction of̌z. To take into account the other matrices,
one needs to carry out the calculation of the componentm′z which corresponds to higher
orders in the gradient expansion.

Introducing polar coordinates with respect to the skyrmion centre, it is easy to transform
equation (11) using expressions (12)–(15) to the following form:

−i
ω

J ′
m′y =

1

r

∂

∂r
r
∂

∂r
m′x +

(
1

r2

∂2

∂ϕ2
+ (1+ cosβ)2

r2

)
m′x −

2(1+ cosβ)

r2

∂

∂ϕ
m′y

i
ω

J ′
m′x =

1

r

∂

∂r
r
∂

∂r
m′y +

(
1

r2

∂2

∂ϕ2
+ (1+ cosβ)2

r2

)
m′y +

2(1+ cosβ)

r2

∂

∂ϕ
m′x.

Hereω is the frequency of the spin wave. The latter equations can be written in compact
Schr̈odinger-like forms in terms of the complex functionψ = m′x + im′y . Assuming that
ψ = einϕRn(r), we obtain

ω

J ′
Rn =

[
−1

r

∂

∂r
r
∂

∂r
+ (n+ 1+ cosβ)2

r2

]
Rn. (16)

We consider here only spin waves with large wave vectors:

k2 = ω

J ′
kLc � 1.

The opposite case,kLc � 1, can be considered also, but is of less interest due to its small
statistical weight and will not be discussed here.

The functionβ = β(r/Lc) is slowly varying with the radii, and the solution of (16)
will be close to free-wave solutionRn = Jn(kr)+ δRn whereJn(kr) is a Bessel function.
The correctionδRn can be obtained in the first order of perturbation theory:

δRn = Jn(kr)
∫ r

∞
Jn(kr

′)Yn(kr ′)F (r ′) dr ′ + Yn(kr)
∫ r

0
J 2
n (kr

′)F (r ′) dr ′. (17)

HereYn(kr) is the other (singular) solution of the Bessel equation, and

F(r) = 2n(1+ cosβ)

r
. (18)

The scattering amplitudefn ∼ 1/(kLc) is given at the second term in (17) and can be
calculated using the asymptotes of the Bessel functions forkr � 1. The scattering at large
angles is defined byn ∼ 1 and the cross section for large-angle scatteringσ ∼ (1/(kLc))2
is small. The scattering at small angles is not so significant physically. The main effect
of the skyrmion consists in the additional rotation of the spin-deviation vectorm = Vm0

wherem0 = (Reψ, Imψ, 0) andψ = m0ei(k·r−ωt). In one sense the behaviour of the spin
waves in the presence of a skyrmion is an analogue of the Bohm–Aharonov effect, in which
the vector potential only changes the phase of the wave function outside the solenoid with
integer numbers of flux quanta.

I now consider the special dilatation mode. In the above, I did not consider the collective
mode in which only the Euler angleβ depends on time while the other the angles are
unchanged. Such oscillation changes the skyrmion size, and the main gradient energy is
excluded because it does not depend on the core size. In such a case, the term containing
the time derivative in the action (9) vanishes also, and one needs to find the next term in
the expansion in time derivatives.
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For the calculation, we shall assume thatβ = β0(r/L(t)) whereβ0 is the static solution
for the skyrmion [13]. In Lagrangian (2), the corresponding time derivative generates the
term

−H1 = i
∫
χ+U+

∂U

∂t
χ d2r =

∑
l 6=z

∫
χ+Ωlrσlχ d2r

(
1

L

∂L

∂t

)
. (19)

Becauser · ∇ϕ = 0, the term containingΩz vanishes, and

rΩx = 1

2
r
∂β

∂r
sinϕ rΩy = 1

2
r
∂β

∂r
cosϕ.

The first-order term in the skyrmion action vanishes:

S1 = Tr
∫
H1G0 d2r dt = 0

(G0 is given by (6)). It can be shown that the mixed term containing∂L/∂t and the space
derivatives ofΩl vanishes also. One needs to find the second-order term in∂L/∂t . Using
standard perturbation theory for the action, we get

S2 = i

2
Tr
∫
H1G0H1G0 d2r dt (20)

where we omit for brevity intermediate integrations over space and time. In the calculation
of (20) one must take into account only the terms withs = 0 in Green function (6), because
other terms give small contributions of the order ofm ∼ 1/ωc:

S2 = i

2
Tr
∫
H1(r, t)g0(ω)80p(r)8

+
0p(r

′)

× H1(r, t)g0(ω)80p′(r
′)8+0p′(r)e

iωδ dω

2π
d2r ′ d2r ′ dt

we take into account only(∂L/∂t)2, neglecting higher-order terms in the time derivatives
and space derivatives ofΩl , due to the nonlocality. The contribution to the action gives
only cross terms containing the singularities ing0 above and below the realω-axis. Using
the orthogonality properties of8sp and performing the summation overp, one has

S2 = 1

8J

∂2E1

∂L2

∫ (
r
∂β

∂r

)2 d2r

2π

(
1

L

∂L

∂t

)2

dt. (21)

The space integral diverges logarithmically and we get, with logarithmic accuracy, using
the linearizationL = Lc + δL,

S2 = 1

8J

(
ln
L∗

Lc

)∫ (
∂ δL

∂t

)2

dt. (22)

We must calculate also the change in the skyrmion energy due to the change of the skyrmion
size using the expression (8) for the Zeeman and Coulomb energies, omitting the gradient
energy which does not depend on it:

δE = 1

2

∂2E1

∂L2
= −3

2
gµBH

(
ln
L∗

Lc

)
(δL)2.

Therefore we have an ordinary oscillator total action:

S2 =
∫ [

1

8J

(
ln
L∗

Lc

)(
∂ δL

∂t

)2

+ 3

2
gµBH

(
ln
L∗

Lc

)
(δL)2

]
d2r dt
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with the oscillator frequency

h̄ω =
√

12gµBHJ

where J is the exchange energy per electron in the uniform ferromagnetic state. The
oscillator frequency is consequently smaller than

J = e2

2lH

1

h̄

√
2π

due to the assumed small value of theg-factor. The result obtained is valid with logarithmic
accuracy.
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